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bstract

The decision as to whether a contaminated site poses a threat to human health and should be cleaned up relies increasingly upon the use of risk
ssessment models. However, the more sophisticated risk assessment models become, the greater the concern with the uncertainty in, and thus the
redibility of, risk assessment. In particular, when there are several equally plausible models, decision makers are confused by model uncertainty
nd perplexed as to which model should be chosen for making decisions objectively. When the correctness of different models is not easily judged
fter objective analysis has been conducted, the cost incurred during the processes of risk assessment has to be considered in order to make an
fficient decision. In order to support an efficient and objective remediation decision, this study develops a methodology to cost the least required
eduction of uncertainty and to use the cost measure in the selection of candidate models. The focus is on identifying the efforts involved in reducing
he input uncertainty to the point at which the uncertainty would not hinder the decision in each equally plausible model. First, this methodology
ombines a nested Monte Carlo simulation, rank correlation coefficients, and explicit decision criteria to identify key uncertain inputs that would

nfluence the decision in order to reduce input uncertainty. This methodology then calculates the cost of required reduction of input uncertainty in
ach model by convergence ratio, which measures the needed convergence level of each key input’s spread. Finally, the most appropriate model
an be selected based on the convergence ratio and cost. A case of a contaminated site is used to demonstrate the methodology.

2006 Elsevier B.V. All rights reserved.
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. Introduction

When a contaminated site is identified, one issue that greatly
oncerns the public is whether the contamination poses a threat
o human health and the environment. The problem then con-
ronting decision makers is whether the site should be subject to
ontrol or remediation. Since the paradigm of risk assessment
nd management was established in 1983 [1], risk assessment
as become an important tool used to assess how human health
s impacted by contaminants released from a human activity,
ransferred through environmental media, and finally exposed to
umans via inhalation, ingestion, and dermal contact. Because

f its capability of systematically providing information relating
isk sources to risk receptors, the results as well as the processes
f risk assessment are increasingly used to facilitate decisions
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egarding whether a contaminated site should be remediated
nd what degree of remediation is needed [2,3]. In practice,
isk assessment involves modeling of multimedia transport and
ultiple pathway exposure and requires detailed site-specific

nformation to enable accurate simulation of the situation. This
nformation includes source conditions, land use properties, res-
dent lifestyles, and environmental characteristics as well as the
nherent individual, spatial, and temporal variability of the above
nformation. However, the more sophisticated risk assessment

odels become, through inclusion of such concepts as stochas-
icity, multimedia transfer, and site-specificity, the greater the
oncern with the uncertainty in, and thus the credibility of, risk
ssessment. In particular, when there are several equally plausi-
le models, it is difficult to select one for the purpose of facilitat-
ng decision-making. The issue of model selection results from
odel uncertainty and constitutes a part of model uncertainty.
The purpose of using models is to clarify the problem and

acilitate decision-making. However, uncertainty in the use of
odels may confuse the decision-making process. To resolve

mailto:hwma@ntu.edu.tw
dx.doi.org/10.1016/j.jhazmat.2006.06.096
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he confusion, it may be necessary to question how a model
an support the decision. For a model to be helpful, the asso-
iated uncertainty should not be too large. The purpose of this
tudy is to develop a methodology to measure the least required
eduction of uncertainty and to use the measure in the selection
f candidate models. A decision problem about a contaminated
ite is used as a case study to demonstrate the methodology.

The rest of the paper is organized as follows. Section 2 sum-
arizes the uncertainty in risk assessment modeling approaches.
ection 3 outlines the methodology, and Section 4 presents the
esults and discussion associated with the decision problem.
inally, the concluding remarks are provided in Section 5.

. Uncertainty in risk assessment modeling

This study explores how to choose among equally plausible
odels for risk-related decisions. The issue of model selection is

losely related to model uncertainty, which is described in this
ection along with brief descriptions of other types of uncer-
ainty.

Many classifications of sources of uncertainty in risk assess-
ent are discussed in the literature [4–8]. Three representative

lassifications are listed in Table 1. Although some of the tax-
nomies are the same, they are not clearly separated. The same
efinitions in different classifications comprise variability (also
alled stochastic, aleatory, or Type A uncertainty [4,7,8]) and
nput uncertainty (also called subjective, epistemic, or Type B
ncertainty [4,7,8]). Variability is due to spatial, temporal, or
ndividual randomness and cannot be decreased by further data
ollection, and input uncertainty is due to insufficient data or
mproper information and can be reduced through obtaining

ore information. The unclearly separated definitions include

odel, scenario, and decision-rule uncertainty (the classification

etails are shown in Table 1). These separations may have differ-
nt names (decision-rule uncertainty named by Finkel and sce-
ario uncertainty named by USEPA), independently separated

r
m
g
p

able 1
he representative classifications of uncertainty in the literature

inkel [5] USEPA [6]

arameter uncertainty Scenario unce
Measurement errors Descriptive
Random errors Aggregatio
Systematic errors Errors in pr

ecision rule uncertainty Incomplete
Choosing the measure used to describe risk Parameter unc
Choosing the summary statistic to characterize risk Measureme
Choosing the parameters that define “acceptable” risk Sampling e
Choosing a utility function for the summary measure Variability

Aggregating individual utilities to determine social welfare The use of
Trading off immediate vs. delayed consequences Model uncert
odel uncertainty Relationshi
Surrogate variables Modeling e
Excluded variables
Abnormal conditions
Incorrect model form

ariability
dous Materials 141 (2007) 17–26

model and scenario uncertainty separated by USEPA), or mutu-
lly included (scenario uncertainty embraced into model uncer-
ainty by Cullen and Frey). Model uncertainty, variability, and
nput uncertainty are used in this paper as classified by Cullen
nd Frey. In other words, besides variability and input uncer-
ainty, the other types of uncertainty belong to model uncertainty.

Most studies have focused on analysis and quantification
f variability and input uncertainty, since the quantification of
hese phenomena is relatively straightforward. There are many

easures and theories to analyze and quantify variability and
nput uncertainty, including probability theory, Bayesian the-
ry, evidence theory, possibility theory, and interval arithmetic
heory [9]. Probability theory is the most developed and popular

ethod to deal with variability and input uncertainty, and the
onte Carlo technique is the most extensively used method for

ncertainty analysis [10–13]. To gain insight into variability and
nput uncertainty in the risk assessment process, nested Monte
arlo simulation has been suggested to evaluate the joint vari-
nce for the risk estimates [14,15]. A methodology combining
ested Monte Carlo simulation, rank correlation coefficients,
nd explicit decision criteria has also been proposed to identify
ey uncertainty variables important to the decision [2].

In contrast to variability and input uncertainty, model
ncertainty is more difficult to analyze, and there is little
ocumented research in this area [16]. Although the importance
f model uncertainty has been demonstrated [16–18], there
as no literature proposing a systematic analysis and a specific
uantification method of model uncertainty before the research
f Hertwich et al. [17] and the SMP method developed by
oschandreas and Karuchit [16]. It has been shown that

esides comparing model predictions with observations, the
agnitude of model uncertainty can be determined by the
ange of results among several models [6,17,19]. Therefore,
any studies have performed model comparisons to investi-

ate the differences among models; in particular, a series of
apers compared MEPAS, MMSOILS, and RESRAD [20–23].

Cullen and Frey [8]

rtainty Model uncertainty
errors Model structure

n errors Model detail
ofessional judgment Validation and model uncertainty
analysis Extrapolation
ertainty Resolution
nt errors Model boundaries
rrors Scenario uncertainty

Variability
Input uncertainty

generic and surrogate data Random error
ainty Systematic error
p errors Inherent randomness or unpredictability
rrors Lack of empirical basis

Dependence and correlation
Disagreement between experts
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hrough simulating several cases, these studies have observed
bvious differences, which are as large as two or even three
rders of magnitude, of risk estimates in various models due
o different environmental processes considered, mathematical
ormulations used, and scenario assumptions made. Therefore,
sing an unsuitable model may cause a great deal of uncertainty.
he distributional approach is another method combined with
odel comparison and developed to analyze and quantify model

ncertainty [14]. The distributional approach combines risk
ssessment with a decision tree to produce a series of decision
oints called “nodes” that have alternative models. Each “tree”,
hich has been assigned a probability or “weight” based on

xpert judgment, is a combination of alternative models from
ach node. Then, model uncertainty can be obtained from the
ange of the final distributional results of each alternative model.
his method was used to implement uncertainty analysis by

eplacing different model structures, assumptions, or scenarios,
hereby providing insight into model uncertainty [14,24,25].

In the literature, the analysis of model uncertainty has
ocused mostly on quantification of the magnitude of model
ncertainty by obtaining differences among several models and
cenarios. However, the research has not provided practical
ethods for model uncertainty reduction and model selection.

screening procedure based on the relationship between
xposure pathways and estimated risk results has been proposed
o compare the relative suitability between potential multimedia

odels [26]. This procedure could eliminate an unsuitable
odel that neglects important transport or exposure pathways

nd thereby demonstrate that model selection is a practical
ethod to reduce model uncertainty. However, when several

qually plausible models stand the test of screening out those
ith improper environmental processes and exposure scenarios,
ecision makers are still confused by model uncertainty and
erplexed as to which one should be chosen for making
ecisions more objectively. In this situation, and in the present
aper, the cost of reducing the uncertainty of the models is used
s a criterion of model selection. A decision using risk assess-
ent as an evaluation tool is not made without incurring cost,
hich mainly includes the costs of model implementation and

nformation collection. In practice, the collection of environ-
ental, exposure, physicochemical, and biological information

onstitutes the major part of the cost. Especially when the
ncertainty is too large to make a decision, the uncertainty
eeds to be reduced by obtaining additional information, which
nvolves the additional expense of resources. Therefore, if the
ost of reducing uncertainty is combined with the selection of
isk assessment models, the remediation decision can be made
ore efficiently and objectively. The focus is on identifying the

fforts involved in reducing the input uncertainty to the degree
t which the uncertainty will not hinder the decision.

. Methodology
.1. The case of contaminated-groundwater risk assessment

A case study of a site located in the northern part of Tai-
an and contaminated by chlorinated hydrocarbons, primarily

t
l
l
o
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richloroethylene (TCE) and tetrachloroethylene (PCE), is used
o demonstrate the methodology. Contamination in groundwa-
er is difficult to identify and remove because of the presence
f a dense non-aqueous-phase liquid. At this point, risk assess-
ent has been invoked to evaluate the problem and to facilitate

ecision-making with respect to whether further remediation is
arranted.
The site is divided into four zones according to the land use

roperty and spatial pattern of contaminant concentration. This
tudy uses one of the four zones as the case: 80,000 m2 of farm-
and with scattered residences. According to the most recent
bservations of 10 monitoring wells in this zone, the mean and
tandard error of the contaminant concentrations are 0.00178
nd 0.000635 mg L−1, respectively, for TCE and 0.000332 and
.000101 mg L−1, respectively, for PCE [27]. The contamina-
ion source in this case is groundwater, which is used by the
esidents for domestic purposes and irrigation. There are eleven
xposure pathways: ingestion of drinking water, ingestion of
hower water, ingestion of beef, ingestion of milk, ingestion of
egetables, ingestion of crops, ingestion of soil, dermal contact
f soil, dermal contact of shower water, inhalation of shower air,
nd inhalation of indoor air [26].

MEPAS [28], MMSOILS [29], and CalTOX [30–32] are cho-
en for model comparison because these models are widely
sed environmental multimedia models suitable for assess-
ent of groundwater-contaminated sites. These models are

lso designed for screening-level tools and site-specific risk
ssessments for regulatory development and standard setting
20]; however, the different environmental processes consid-
red, mathematical formulations used, and scenario assumptions
ade in these models will cause different results, and thus
odel uncertainty. The scenario considered in this case study

s that the residents use groundwater for irrigation and domes-
ic purposes. In this scenario, the MEPAS model has the most
omplete exposure pathways, including the eleven mentioned in
he previous paragraph. MMSOILS excludes the exposure path-
ays regarding ingestion of shower water, inhalation of shower

ir, and inhalation of indoor air, while CalTOX does not con-
ider the pathways of shower water ingestion, soil ingestion,
nd dermal contact of soil. However, when there are several
ppropriate models to consider, producing model uncertainty
hat is not easily analyzed and quantified, a methodology is
eeded to select a model for the purpose of decision-making. In
his case study, these three models are used to demonstrate the

ethodology.

.2. Model selection under uncertainty

For each equally plausible model, the methodology combines
ested Monte Carlo simulation, rank correlation coefficients,
nd explicit decision criteria to identify key uncertain inputs
hat would influence the decision. The cost of the least required
eduction of input uncertainty in each model is then calculated

hrough the convergence ratio, which represents the convergence
evel of each input’s spread of uncertainty and will be presented
ater. Finally, the models can be compared and selected based
n the convergence ratio.
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To reflect the uncertainty of risk estimates associated with
nputs, a Monte Carlo technique is used to propagate input
ncertainty. Each of the input parameters is treated as a random
ariable with known or estimated probability density function
pdf). For each of the variables, one value is selected at ran-
om with respect to the associated pdf. The individual cancer
isk is then calculated by using environmental multimedia risk
ssessment models with any sample set of input values. The
ampling and calculation are repeated many times to produce
he pdf of the risk estimate in this case study [26]. Furthermore,
n order to separate variability and input uncertainty and pro-
uce two-dimensional uncertainty information, a nested Monte
arlo simulation has been extensively adopted to evaluate the

oint variance for the risk estimate [14,15]. Since input uncer-
ainty can be reduced by collecting information, and variability
s not reducible, this study assumes that there is uncertainty asso-
iated with physicochemical and environmental properties and
hat there is variability attached to the exposure and demographic
arameters. The input uncertainty and variability distributions
or all inputs in the models are shown in Table 2.

Along with the Monte Carlo simulation, a sensitivity anal-
sis method is used to identify important information, whose
ncertainty is a driving factor in the overall uncertainty of
isk estimates for population. Several useful sensitivity meth-
ds, including sample (Pearson) and rank (Spearman) correla-
ion analysis, sample and rank regression analysis, analysis of
ariance (ANOVA), classification and regression tree (CART),
esponse surface method (RSM), Fourier amplitude sensitiv-
ty test (FAST), mutual information index (MII), and Sobol’s
ndices, have been used in two-dimensional probabilistic risk
ssessment [33–36]. In this study, a rank correlation coefficient
etween each input and the associated risk output is computed to
easure the importance of each parameter to the overall uncer-

ainty. The rank correlation coefficients are indicators of the
egree of monotonic relationship between the sample values of
he model prediction and those of the uncertain inputs. For this
eason, rank correlation coefficients often work better to rank
nput contributions to uncertainty than other methods that are
ased on only a linear relationship [2,4,37]. Although the rank
orrelation coefficient method embodied in many commonly
sed software tools has been extensively used, it is not suitable
or non-monotonic models [33]. The relationships between the
ample values of the model prediction and those of the stochas-
ic inputs in the three models have been proved as monotonic. In
ddition, the interactions among inputs have been incorporated
nto the Monte Carlo method.

From the perspective of decision makers, it is important
o make an efficient decision, which entails minimizing costs
nd maximizing correctness. When the correctness of different
odels is not easily judged after objective analysis has been

onducted, the cost incurred during the processes of risk assess-
ent has to be considered in order to make an efficient decision.
hen several models have been used to estimate the risk, the
dditional cost associated with the decision process would be
he cost of ensuring that the modeling results are useful for the
ecision-making. In other words, the cost is incurred in order to
ecrease the input uncertainty, and thus the uncertainty of total
dous Materials 141 (2007) 17–26

isk, to the degree at which the uncertainty would not hinder
he decision. The cost of reducing input uncertainty involves
ollecting additional information about model inputs through
ampling, survey, or laboratory experiments. The focus of the
roposed methodology is on identifying the efforts involved to
ecrease input uncertainty for individual models to the point of
ot interfering with the decision. The model with the minimum
ost may then be selected as the basis of the decision-making.

The procedure is as follows:

. According to the contamination characteristics, site condi-
tions, and exposure scenario assumed in the practical situ-
ation, develop the conceptual site model to incorporate the
relevant exposure pathways in these environmental multime-
dia models [26]. For each multimedia risk assessment model
and considered exposure pathway, perform risk calculations
and uncertainty analysis of inputs to produce probability
distributions of risk estimates. The nested Monte Carlo tech-
nique is used to propagate variability and input uncertainty,
and sampling for uncertainty realizations and variability
iterations is respectively repeated n and m times (n = 100
and m = 1000 in this case) to produce the pdf of the risk
estimate.

. Combine the nested Monte Carlo simulation and the rank cor-
relation coefficients computations to determine the important
uncertain inputs with greater contributions to total uncer-
tainty (e.g., greater than 5.0%) at a chosen variability per-
centile (95th variability percentile in this case study) [33,38].

. Based on the assumed acceptable risk level (e.g., 10−6), fur-
ther identify the critical uncertain inputs that would affect the
decision (i.e., whether the range of values the inputs can take
would produce estimates that are larger than the acceptable
level in some situations and smaller in others). An input in
the set of the important inputs obtained in Step (2) is fixed at
its minimum and maximum values, and then the nest Monte
Carlo simulation is performed to obtain the range of risk
outputs, respectively. The values at some certainty level and
variability percentile can be extracted for examination at next
step (95th certainty level and 95th variability percentile is
used in this case).

. Repeat Step (3) for each important uncertain input obtained
in Step (2). If the acceptable risk level falls within the range
of risk outputs generated in Step (3) for an input, variation
of the input may lead to different decisions, and a better
understanding of the input is needed. Then the set of crit-
ical uncertain inputs that would influence the decision is
obtained.

. Calculate the convergence level of the distribution of each
critical input in each model, termed the convergence ratio,
which is the smallest degree of reduction of input uncertainty
in order that variation of the input will not affect the decision.
The cost of collecting uncertain input information is based
on the convergence ratio. The equation of convergence ratio

(Rc) is as follows:

Rc = σo − σc

σo
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Table 2
The description of uncertain and variable inputs in the three multimedia models

Parameter Definition Parameters in models Distribution Reference

MEPAS MMSOILS CalTOX

Chemical-specific parameters
Cwt TCE concentration in groundwater (mg L−1) – – – Normal (mean = 1.78E−3,

S.D. = 6.35E−4)
[27]

Cwp PCE concentration in groundwater (mg L−1) – – – Normal (mean = 3.32E−4,
SD = 1.01E−4)

[27]

Kpt Skin absorption permeability constant for
TCE (cm/h)

– – – Lognormal (mean = 4.66E−02,
GSD = 2.0)

[40]

Kpp Skin absorption permeability constant for
PCE (cm/h)

– – – Lognormal (mean = 4.88E−02,
GSD = 2.0)

[40]

λdt Degradation constant of TCE in surface soil
(day−1)

– Lognormal (mean = 7.45E−04,
GSD = 2.0)

[40]

λdp Degradation constant of PCE in surface soil
(day−1)

– Lognormal (mean = 1.18E−03,
GSD = 2.0)

[40]

λw Weathering decay constant for losses from
plant surfaces (day−1)

– Lognormal (mean = 5.00E−02,
GSD = 2.0)

[41]

Dat Diffusion coefficient of TCE in air (m2/s) – Lognormal (mean = 8.18E−06,
GSD = 1.05)

[42]

Dap Diffusion coefficient of PCE in air (m2/s) – Lognormal (mean = 7.20E−06,
GSD = 1.05)

[42]

Dlt Diffusion coefficient of TCE in water (m2/s) – Lognormal (mean = 9.10E−10,
GSD = 1.05)

[42]

Dlp Diffusion coefficient of PCE in water (m2/s) – Lognormal (mean = 8.20E−10,
GSD = 1.05)

[42]

Koct Organic carbon partition coefficient of TCE
(unitless)

– Lognormal (mean = 8.56E+01,
GSD = 2.0)

[40]

Kocp Organic carbon partition coefficient of PCE
(unitless)

– Lognormal (mean = 1.97E+02,
GSD = 2.0)

[40]

Bvt Soil-to-vegetable transfer factor of TCE
(kg/kg)

– – – Lognormal (mean = 1.38, GSD = 2.0) [39]

Bvp Soil-to-vegetable transfer factor of PCE
(kg/kg)

– – – Lognormal (mean = 1.25, GSD = 2.0) [39]

Brt Soil-to-crop transfer factor of TCE (kg/kg) – – – Lognormal (mean = 7.14, GSD = 2.0) [39]
Brp Soil-to-crop transfer factor of PCE (kg/kg) – – – Lognormal (mean = 2.71, GSD = 2.0) [39]
Fmt Biotransfer factor in meat of TCE (day/kg) – – – Lognormal (mean = 2.50E−05,

GSD = 2.0)
[39]

Fmp Biotransfer factor in meat of PCE (day/kg) – – – Lognormal (mean = 2.75E−05,
GSD = 2.0)

[39]

Fdt Biotransfer factor in milk of TCE (day/kg) – – – Lognormal (mean = 2.76E−06,
GSD = 2.0)

[39]

Fdp Biotransfer factor in milk of PCE (day/kg) – – – Lognormal (mean = 3.12E−06,
GSD = 2.0)

[39]

Environmental parameters
IR Irrigation water application rate (L/m2/mon) – – Lognormal (mean = 8.41E−01,

GSD = 2.0)
[27]

ρb Bulk density in surface soil (g/cm3) – – Uniform (minimum = 1.35,
maximum = 1.65)

[27]

tdd Thickness of soil layer that is polluted (m) – – Lognormal (mean = 1.00E−01,
GSD = 2.0)

[27]

P Area soil density of farmland (kg/m2) – Lognormal (mean = 2.40E+02,
GSD = 2.0)

[41]

foc s Organic carbon fraction in surface soil
(unitless)

– Lognormal (mean = 5.00E−03,
GSD = 1.7)

[27]

Exposure parameters
TClv Duration of the growing period for

vegetables (day)
– Lognormal (mean = 6.00E+01,

GSD = 1.2)
[41]

Ylv Yield of leafy vegetables (kg/m2) – Lognormal (mean = 2.00E+02,
GSD = 2.0)

[41]

Qft Animal ingestion rate of feed (kg/day) – – – Lognormal (mean = 5.50E+01,
GSD = 1.15)

[29]
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Table 2 (Continued )

Parameter Definition Parameters in models Distribution Reference

MEPAS MMSOILS CalTOX

Qst Animal ingestion rate of soil (kg/day) – – – Lognormal (mean = 5.00E−01,
GSD = 1.15)

[29]

Qwt Animal ingestion rate of water (L/day) – – – Lognormal (mean = 5.00E+01,
GSD = 1.15)

[29]

BW Body weight (kg) – – – Normal (mean = 59.9, S.D. = 10.6) [43]
Asd Area of skin exposed while showering (cm2) – – – Lognormal (mean = 1.66E+04,

GSD = 1.2)
[27]

Add Area of skin contacted by soil (cm2) – – Lognormal (mean = 4.98E+03,
GSD = 1.2)

[27]

AD Adherence factor for contact with soil
(mg/cm2)

– Lognormal (mean = 1.00E+00,
GSD = 1.4)

[41]

Kc Indoor volatilization factor (L/m3) – Lognormal (mean = 0.5, GSD = 1.2) [41]
ETs Exposure time during shower per day (h/day) – – – Lognormal (mean = 1.67E−01,

GSD = 1.7)
[41]

ETai Exposure time in house per day (h/day) – Lognormal (mean = 8.00E+00,
GSD = 1.2)

[40]

VRhouse Average house ventilation rate (m3/h) – Lognormal (mean = 7.50E+02,
GSD = 1.2)

[40]

VRbath Average bathroom ventilation rate (m3/min) – Lognormal (mean = 1.00E+00,
GSD = 1.2)

[40]

Whouse Water use rate for all household activities
(L/h)

– Lognormal (mean = 4.00E+01,
GSD = 1.2)

[40]

Wbath Water use rate for bathing (L/min) – Lognormal (mean = 8.00E+00,
GSD = 1.2)

[40]

Krain
ps Plant-soil partition coefficient for surface

soil due to rain splash (kg/kg)
– Lognormal (mean = 3.40E−03,

GSD = 1.2)
[40]

fir Fraction of the pollutant in irrigation water
retained in soil water (unitless)

– Lognormal (mean = 2.50E−01,
GSD = 1.2)

[40]

BRa Indoor breathing rate per kg body weight
(m3/kg h)

– Lognormal (mean = 1.90E−02,
GSD = 1.2)

[40]

Udw Ingestion rate of drinking water (L/day) – – – Lognormal (mean = 2.00E+00,
GSD = 1.7)

[41]

Usw Ingestion rate of shower water (L/day) – Lognormal (mean = 6.00E−02,
GSD = 1.7)

[41]

Ulv Ingestion rate of vegetables (kg/day) – – – Lognormal (mean = 3.23E−01,
GSD = 1.15)

[44]

Ulr Ingestion rate of root crop (kg/day) – – – Lognormal (mean = 2.10E−01,
GSD = 1.15)

[44]

Umt Ingestion rate of meat (kg/day) – – – Lognormal (mean = 7.86E−03,
GSD = 1.15)

[44]

Umk Ingestion rate of milk (L/day) – – – Lognormal (mean = 5.59E−02,
GSD = 1.15)

[44]

Usi Inhalation rate of shower (m3/day) – Lognormal (mean = 2.00E+00,
GSD = 1.2)

[41]

Uai Inhalation rate of indoor air (m3/day) – Lognormal (mean = 1.50E+00,
GSD = 1.2)

[41]

–

6

4

i
9
i

Uds Ingestion of soil (g/day) –

where σo is the original standard deviation of each uncer-
tain input, and σc is the converged standard deviation of each
uncertain input in each model. Therefore, the smaller the con-
vergence ratio, the less the reduction of uncertainty needed
and the lower the cost of collecting data.

. Compare the total cost of achieving the required convergence,

including additional sampling, survey, or lab experiments
about the critical uncertain inputs, computed for the vari-
ous models to find the lowest cost model for the decision
problem.

1
a
l
c

Lognormal (mean = 1.00E−01,
GSD = 1.2)

[41]

. Results and discussion

The results of the nested Monte Carlo simulation are shown
n Table 3. The risk values of the 50th certainty level and the
5th variability percentile for the total risk estimates computed
n MEPAS, MMSOILS, and CalTOX model are 2.01 × 10−6,

.31 × 10−6, and 1.54 × 10−6, respectively. These risk values
re all greater than but close to the pre-assumed acceptable risk
evel, 10−6. Table 4 lists the important uncertain inputs with
ontributions to variance of the total risk greater than 5.0%; these
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Table 3
The total risk values of 5th, 50th, and 95th certainty level at 5th, 50th, and 95th variability percentile in each model

Variability percentile (%) MEPAS MMSOILS CalTOX

5%a 50%a 95%a 5%a 50%a 95%a 5%a 50%a 95%a

5 4.39E−07 9.14E−07 2.22E−06 2.97E−07 5.89E−07 1.14E−06 3.58E−07 6.96E−07 1.35E−06
50 6.18E−07 1.35E−06 3.10E−06 4.21E−07 8.49E−07 1.61E−06 5.02E−07 1.01E−06 1.97E−06
95 9.24E−07 2.01E−06 4.87E−06 6.33E−07 1.31E−06 2.54E−06 7.53E−07 1.54E−06 3.02E−06

a Certainty level.

Table 4
Major uncertain inputs identified by the sensitivity analysis for the three multimedia risk assessment models

Parameter Definition Contribution to variance of total risk Distribution

MEPAS (%) MMSOILS (%) CalTOX (%)

Cwt TCE concentration in groundwater (mg L−1) 54.5 28.9 39.5 Normal (mean = 1.78E−3, S.D. = 6.35E−4)
Cwp PCE concentration in groundwater (mg L−1) 17.8 38.4 31.3 Normal (mean = 3.32E−4, S.D. = 1.01E−4)
Bvp Soil-to-vegetable transfer factor of PCE (kg/kg) 11.9 15.4 7.8 Lognormal (mean = 1.25, GSD = 2.0)
Kpp Skin absorption permeability constant for PCE (cm/h) 6.8 – 10.5 Lognormal (mean = 4.88E−02, GSD = 2.0)
Kpt Skin absorption permeability constant for TCE (cm/h) – 5.9 – Lognormal (mean = 4.66E−02, GSD = 2.0)
Bvt Soil-to-vegetable transfer factor of TCE (kg/kg) – – 5.2 Lognormal (mean = 1.38, GSD = 2.0)

Table 5
The risk value of 95th certainty level at 95th variability percentile when an input is set at its plausible lower bound or upper bound in various models

Parameter Total risk in various models

MEPAS MMSOILS CalTOX

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

Cwt 9.25E−07 6.65E−06 7.71E−07 3.67E−06 8.15E−07 4.32E−06
Cwp 2.57E−06 6.43E−06 9.47E−07 2.18E−06 1.19E−06 2.43E−06
Bvp 9.87E−07 3.35E−06 5.13E−07 2.07E−06 6.89E−07 2.78E−06
K
K −06
B

i
i
r
s

v
m
c
t
d
c
f

a
(

t
t
b
5
m

T
T

P

C
C
B

σ

e

pp 4.89E−06 7.63E−06 –
pt – – 1.23E
vt – – –

nputs are derived from sensitivity analysis. It is found that the
mportant inputs in different models are similar, although the
anks of influence on the total risk are different, which shows
ome consistency among these models for the same scenario.

Table 5 shows the analysis results regarding whether the
ariation of inputs would affect the decision, which is the deter-
ination of whether the risk is unacceptable (using 10−6 as the

riterion in the study) and remediation is needed. It is found that

he critical uncertain inputs identified by way of influence on the
ecision in different models are somewhat different. TCE con-
entration in groundwater (Cwt) and soil-to-vegetable transfer
actor of PCE (Bvp) are the only two important inputs revealed in

t
5
g
o

able 6
he uncertainty convergence ratios needed for avoiding confusion of decision

arameter Mean σo MEPAS

σc

wt 1.78E−03 6.35E−04 5.16E−04
wp 3.32E−03 1.01E−04 –
vp 1.38E+00 1.08E+00 9.94E−01

o: The original standard deviation of each uncertain input; σc: the converged standar
ach uncertainty input in each model.
– 2.25E−07 4.03E−06
3.19E−06 – –
– 1.01E−06 2.86E−06

ll three models. In addition, PCE concentration in groundwater
Cwp) is a critical uncertain input in the MMSOILS model.

Table 6 shows the convergence ratios for the critical uncer-
ain inputs identified above (i.e., Cwt, Cwp, and Bvp) to reflect
he degree of uncertainty reduction that should be reached to
e useful for the decision. Because the total risk values at the
0th certainty level of the 95th variability percentile in the three
odels are all greater than 10−6, the level of minimum uncer-
ainty convergence is reached when the total risk values at the
th certainty level of the 95th variability percentile are exactly
reater than 10−6. As illustrated in Fig. 1, for example, the
riginal distribution of TCE, called A, in the MEPAS model

MMSOILS CalTOX

Rc σc Rc σc Rc

0.19 3.12E−04 0.51 4.19E−04 0.34
– 5.97E−05 0.41 – –
0.08 1.40E−01 0.87 3.78E−01 0.65

d deviation of each uncertain input in each model; Rc: the convergence ratio of
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ig. 1. The uncertainty reduction of total risk from the converged distribution o
o make a decision, it needs to decrease to be as small as B so that a decision ma

preads over a wide range to make the distribution of total risk
overing the decision criteria (e.g., the acceptable risk level of
0−6) and cannot explicitly support the decision. By reducing
he input uncertainty of TCE in the MEPAS model, the distri-
ution becomes as narrow as B, and the variation of total risk is
lso reduced to make the 5th percentile risk value of total risk
reater than 10−6. In this situation, it becomes clearer that the
ontaminated site is dangerous enough to require remediation.

As shown in Table 6, the mean and standard deviations of the
CE concentration are 1.78 × 10−3 and 6.35 × 10−4, respec-

ively. In the MEPAS model, the standard deviation of TCE
oncentration needs to be decreased to 5.16 × 10−4 so that the
otal risk value at the 5th percentile would be greater than 10−6

the result can also be seen in Fig. 1), which produces a con-
ergence ratio of 0.19. Therefore, when the TCE concentration
s used as the basis to compare the information cost in various

odels, the order from highest to lowest convergence ratio is as
ollows: MEPAS, CalTOX, and MMSOILS (the values of the
onvergence ratio are 0.19, 0.34, and 0.51, respectively, and are
hown in Table 6 and Fig. 1). Because the smaller the conver-
ence ratio, the less the reduction of uncertainty needed and the
ower the cost of collecting data, the MEPAS model is the best

odel in this case. Similar results are revealed in the convergence
atios of soil-to-vegetable transfer factor of PCE (these values

n the MEPAS, CalTOX, and MMSOILS models are 0.08, 0.65,
nd 0.87 respectively and are also shown in Table 6). It also indi-
ates that the MEPAS is the least costly model for determining
hether this site should be further remediated.

s
r

E in each model. When the uncertainty of an input is too large (denoted by A)
ade with respect to the decision criteria (e.g., the acceptable risk value 10−6).

When PCE concentration is considered in comparing the
nformation cost in various models, the convergence ratio of
CE concentration in groundwater only in the MMSOILS model

s 0.41, while the variation of this input does not influence the
ecision in either the MEPAS model or the CalTOX model.
herefore, the MEPAS model is the model with the lowest cost of

educing uncertainty to facilitate the decision regarding whether
he specific decision criteria (acceptable risk level) is exceeded
nd the contaminated site should be cleaned up.

In this study, the data collection method of TCE concentration
s to sample and analyze more groundwater samples, so the cost
f uncertainty reduction is the cost of digging sampling wells,
aking samples on-site, and analyzing the samples in the labora-
ory. In general, the value of the soil-to-vegetable transfer factor
f PCE is obtained from the empirical equation developed by
ravis and Arms [39], so if more actual data must be obtained,

he cost of analyzing the concentration of several types of vegeta-
les and experimental contaminated soils is needed. Therefore,
f different kinds of data collection methods are needed when
here are several important inputs involved in selecting a model,
he costs of the various data collection methods must be calcu-
ated and carefully compared.

. Conclusion
For a decision problem about whether a contaminated site
hould be cleaned up, a methodology that combines the cost of
educing uncertainty and the selection of risk assessment mod-
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ls is developed to facilitate the decision when equally plausible
odels exist. It is important for a decision maker to make an

fficient decision, which entails minimizing costs and maximiz-
ng correctness. When the correctness of different models is not
asily judged after objective analysis has been conducted, the
ost incurred during the processes of risk assessment has to be
onsidered in order to make an efficient decision. When sev-
ral models have been used to estimate the risk, the additional
ost associated with the decision process would be the cost of
nsuring that the modeling results are useful for the decision-
aking. The proposed methodology enables the identification

f efforts involved in reducing the uncertainty of risk estima-
ion to the point at which the uncertainty would not hinder the
ecision-making. Model selection based on this methodology
s believed to improve the efficiency of decision. Although the
ecision problem of site remediation is considered in this study,
he methodology can be applied to model selection involved in
ther decision problems.
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